I got positive feedback for my Risky Road prototype built with Phaser, Matter physics and Simplify.js, but there was a main issue: while the original game was playable in portrait mode, my prototype works in landscape mode.
You may say this is not an issue but a feature, and you can play the game by simply rotating your phone to landscape mode, but hyper casual games work better in portrait mode, just look at Ketchapp and Voodoo games and tell me if you see more portrait or landscape games.
This is still not an issue, we just have to change game size and we are ready to publish the game.
Not really.
In this kind of games, you need to have a wide view of the terrain to know which slopes you are going to approach. The fastest the car, the wider the terrain should be.
And this is when camera zoom comes into play.
Have a look at the game (due to the nature of Matter.js debug draw, it will look better as a standalone page):
The game starts with the cart in front of the screen and no zoom, and zooms out as the cart gains speed.
Everything is managed by zoomTo
method which zooms to a specific value and you can also set the duration and the ease.
But the most important feature is you can set a flag to decide if the zoom effect must start immediately, even if already running, or not.
This allows me to call zoomTo
method at each frame without worring if I am already zooming. Setting zoom duration to 1 second gives a good result.
Look at the completely commented source code:
var game; var gameOptions = { // start vertical point of the terrain, 0 = very top; 1 = very bottom startTerrainHeight: 0.5, // max slope amplitude, in pixels amplitude: 100, // slope length range, in pixels slopeLength: [150, 350], // a mountain is a a group of slopes. mountainsAmount: 3, // amount of slopes for each mountain slopesPerMountain: 6, // car acceleration carAcceleration: 0.01, // maximum car velocity maxCarVelocity: 1 } window.onload = function() { let gameConfig = { type: Phaser.AUTO, backgroundColor: 0x75d5e3, scale: { mode: Phaser.Scale.FIT, autoCenter: Phaser.Scale.CENTER_BOTH, parent: "thegame", width: 750, height: 1334 }, physics: { default: "matter", matter: { debug: true, debugBodyColor: 0x000000 } }, scene: playGame } game = new Phaser.Game(gameConfig); window.focus(); } class playGame extends Phaser.Scene{ constructor(){ super("PlayGame"); } create(){ // creation of pool arrays this.bodyPool = []; this.bodyPoolId = []; // array to store mountains this.mountainGraphics = []; // mountain start coordinates this.mountainStart = new Phaser.Math.Vector2(0, 0); // loop through all mountains for(let i = 0; i < gameOptions.mountainsAmount; i++){ // each mountain is a graphics object this.mountainGraphics[i] = this.add.graphics(); // generateTerrain is the method to generate the terrain. The arguments are the graphics object and the start position this.mountainStart = this.generateTerrain(this.mountainGraphics[i], this.mountainStart); } // method to add the car, arguments represent x and y position this.addCar(250, game.config.height / 2 - 70); // the car is not accelerating this.isAccelerating = false; // input management this.input.on("pointerdown", this.accelerate, this); this.input.on("pointerup", this.decelerate, this); // collision check between the diamond and the car. Any other diamond collision is not allowed this.matter.world.on("collisionstart", function(event, bodyA, bodyB){ if((bodyA.label == "diamond" && bodyB.label != "car") || (bodyB.label == "diamond" && bodyA.label != "car")){ this.scene.start("PlayGame") } }.bind(this)); } // method to generate the terrain. Arguments: the graphics object and the start position generateTerrain(graphics, mountainStart){ // array to store slope points let slopePoints = []; // variable to count the amount of slopes let slopes = 0; // slope start point let slopeStart = new Phaser.Math.Vector2(0, mountainStart.y); // set a random slope length let slopeLength = Phaser.Math.Between(gameOptions.slopeLength[0], gameOptions.slopeLength[1]); // determine slope end point, with an exception if this is the first slope of the fist mountain: we want it to be flat let slopeEnd = (mountainStart.x == 0) ? new Phaser.Math.Vector2(slopeStart.x + gameOptions.slopeLength[1] * 1.5, 0) : new Phaser.Math.Vector2(slopeStart.x + slopeLength, Math.random()); // current horizontal point let pointX = 0; // while we have less slopes than regular slopes amount per mountain... while(slopes < gameOptions.slopesPerMountain){ // slope interpolation value let interpolationVal = this.interpolate(slopeStart.y, slopeEnd.y, (pointX - slopeStart.x) / (slopeEnd.x - slopeStart.x)); // if current point is at the end of the slope... if(pointX == slopeEnd.x){ // increase slopes amount slopes ++; // next slope start position slopeStart = new Phaser.Math.Vector2(pointX, slopeEnd.y); // next slope end position slopeEnd = new Phaser.Math.Vector2(slopeEnd.x + Phaser.Math.Between(gameOptions.slopeLength[0], gameOptions.slopeLength[1]), Math.random()); // no need to interpolate, we use slope start y value interpolationVal = slopeStart.y; } // current vertical point let pointY = game.config.height * gameOptions.startTerrainHeight + interpolationVal * gameOptions.amplitude; // add new point to slopePoints array slopePoints.push(new Phaser.Math.Vector2(pointX, pointY)); // move on to next point pointX ++ ; } // simplify the slope let simpleSlope = simplify(slopePoints, 1, true); // place graphics object graphics.x = mountainStart.x; // draw the ground graphics.clear(); graphics.moveTo(0, game.config.height * 2); graphics.fillStyle(0x654b35); graphics.beginPath(); simpleSlope.forEach(function(point){ graphics.lineTo(point.x, point.y); }.bind(this)) graphics.lineTo(pointX, game.config.height * 2); graphics.lineTo(0, game.config.height * 2); graphics.closePath(); graphics.fillPath(); // draw the grass graphics.lineStyle(16, 0x6b9b1e); graphics.beginPath(); simpleSlope.forEach(function(point){ graphics.lineTo(point.x, point.y); }) graphics.strokePath(); // loop through all simpleSlope points starting from the second for(let i = 1; i < simpleSlope.length; i++){ // define a line between previous and current simpleSlope points let line = new Phaser.Geom.Line(simpleSlope[i - 1].x, simpleSlope[i - 1].y, simpleSlope[i].x, simpleSlope[i].y); // calculate line length, which is the distance between the two points let distance = Phaser.Geom.Line.Length(line); // calculate the center of the line let center = Phaser.Geom.Line.GetPoint(line, 0.5); // calculate line angle let angle = Phaser.Geom.Line.Angle(line); // if the pool is empty... if(this.bodyPool.length == 0){ // create a new rectangle body this.matter.add.rectangle(center.x + mountainStart.x, center.y, distance, 10, { isStatic: true, angle: angle, friction: 1, restitution: 0 }); } // if the pool is not empty... else{ // get the body from the pool let body = this.bodyPool.shift(); this.bodyPoolId.shift(); // reset, reshape and move the body to its new position this.matter.body.setPosition(body, { x: center.x + mountainStart.x, y: center.y }); let length = body.area / 10; this.matter.body.setAngle(body, 0) this.matter.body.scale(body, 1 / length, 1); this.matter.body.scale(body, distance, 1); this.matter.body.setAngle(body, angle); } } // assign a custom "width" property to the graphics object graphics.width = pointX - 1 // return the coordinates of last mountain point return new Phaser.Math.Vector2(graphics.x + pointX - 1, slopeStart.y); } // method to build the car addCar(posX, posY){ // car is made by three rectangle bodies which will be merged into a compound object let floor = Phaser.Physics.Matter.Matter.Bodies.rectangle(posX, posY, 100, 10, { label: "car" }); let rightBarrier = Phaser.Physics.Matter.Matter.Bodies.rectangle(posX + 45, posY - 15, 10, 20, { label: "car" }); let leftBarrier = Phaser.Physics.Matter.Matter.Bodies.rectangle(posX - 45, posY - 15, 10, 20, { label: "car" }); // this is how we create the compound object this.body = Phaser.Physics.Matter.Matter.Body.create({ // array of single bodies parts: [floor, leftBarrier, rightBarrier], friction: 1, restitution: 0 }); // add the body to the world this.matter.world.add(this.body); // the diamond. It cannot fall off the car this.diamond = this.matter.add.rectangle(posX, posY - 40, 30, 30, { friction: 1, restitution: 0, label: "diamond" }); // add front wheel. A circle this.frontWheel = this.matter.add.circle(posX + 35, posY + 25, 30, { friction: 1, restitution: 0 }); // add rear wheel this.rearWheel = this.matter.add.circle(posX - 35, posY + 25, 30, { friction: 1, restitution: 0 }); // these two constraints will bind front wheel to the body this.matter.add.constraint(this.body, this.frontWheel, 40, 0, { pointA: { x: 30, y: 10 } }); this.matter.add.constraint(this.body, this.frontWheel, 40, 0, { pointA: { x: 45, y: 10 } }); // same thing for rear wheel this.matter.add.constraint(this.body, this.rearWheel, 40, 0, { pointA: { x: -30, y: 10 } }); this.matter.add.constraint(this.body, this.rearWheel, 40, 0, { pointA: { x: -45, y: 10 } }); } // method to accelerate accelerate(){ this.isAccelerating = true; } // method to decelerate decelerate(){ this.isAccelerating = false; } update(){ // zoom is calculated according to car speed. // zoom = 1: no zoom // zoom > 1: zoom in // zoom < 1: zoom out let zoom = 1 - Phaser.Math.Clamp(this.body.speed, 0, 15) / 25 // zoomTo method allows the camera to zoom at "zoom" ratio in 1000 milliseconds // the most important argument is the 4th argument. // If set to "false", camera won't adjust its zoom if already zooming. this.cameras.main.zoomTo(zoom, 1000, "Linear", false); // make the game follow the car this.cameras.main.scrollX = this.body.position.x - game.config.width / 4 + game.config.width * (1 - this.cameras.main.zoom); this.cameras.main.scrollY = this.body.position.y - game.config.height / 2.2 // adjust velocity according to acceleration if(this.isAccelerating){ let velocity = this.frontWheel.angularSpeed + gameOptions.carAcceleration; velocity = Phaser.Math.Clamp(velocity, 0, gameOptions.maxCarVelocity); // set angular velocity to wheels this.matter.body.setAngularVelocity(this.frontWheel, velocity); this.matter.body.setAngularVelocity(this.rearWheel, velocity); } // loop through all mountains this.mountainGraphics.forEach(function(item){ // if the mountain leaves the screen to the left... if(this.cameras.main.scrollX > item.x + item.width + game.config.width){ // reuse the mountain this.mountainStart = this.generateTerrain(item, this.mountainStart) } }.bind(this)); // get all bodies let bodies = this.matter.world.localWorld.bodies; // loop through all bodies bodies.forEach(function(body){ // if the body is out of camera view to the left side and is not yet in the pool.. if(this.cameras.main.scrollX > body.position.x + game.config.width && this.bodyPoolId.indexOf(body.id) == -1){ // ...add the body to the pool this.bodyPool.push(body); this.bodyPoolId.push(body.id); } }.bind(this)) } // method to apply a cosine interpolation between two points interpolate(vFrom, vTo, delta){ let interpolation = (1 - Math.cos(delta * Math.PI)) * 0.5; return vFrom * (1 - interpolation) + vTo * interpolation; } }
And now you can play your Riksy Road prototype in portraid mode while keeping the playability. Download the source code.